LEFT VENTRICULAR REMODELING IN HEART FAILURE (PART I): CURRENT UNDERSTANDING OF PATHOMECHANISMS AND RELATED MYOCARDIAL DYSFUNCTION
ARTICLE PDF

Keywords

left ventricle
remodeling
heart failure
pathophysiology
pathomechanism
myocardium
dysfunction

How to Cite

Chursina, T., Kravchenko, A., & Mikhaliev, K. (2022). LEFT VENTRICULAR REMODELING IN HEART FAILURE (PART I): CURRENT UNDERSTANDING OF PATHOMECHANISMS AND RELATED MYOCARDIAL DYSFUNCTION. Clinical and Preventive Medicine, (3), 71-83. https://doi.org/10.31612/2616-4868.3(21).2022.11

Abstract

Aim: to provide a literature review of the current data on various pathomechanisms of left ventricular (LV) remodeling in heart failure (HF) patients and their role in the development and progression of myocardial dysfunction. This paper is a first part of the review, devoted to the current state of pathophysiology of LV remodeling in HF.

Material and methods. The thematic scientific papers, published during the last decade, constituted the study material. The research methodology involved bibliosemantic method and structural and logical analysis.

Results and discussion. LV remodeling is the result of complex changes at the molecular, cellular and tissue levels, affecting the myocardial mass, geometry and performance, and ultimately leading to HF development and progression. LV systolic dysfunction occurs through the numerous mechanisms, including the defects in sarcomere function, abnormal excitation-contraction coupling and calcium homeostasis, ion channel dysfunction, mitochondrial and metabolic abnormalities, depressed cardiomyocytes survival signaling, redox pathobiology, inflammation and inadequate vasculogenesis. The term «LV diastolic dysfunction» covers the alterations in diastolic distensibility, filling or relaxation of the LV, regardless of whether LV (global) systolic function is normal or abnormal, and regardless of whether the patient has clinical manifestations of HF. The up-to-date pathophysiological paradigm of the development and progression of HF with LV diastolic dysfunction and preserved LV (global) systolic function considers systemic inflammation as a key pathomechanism of structural and functional changes of the myocardium, promoted by various cardiovascular and extracardiac conditions. In its turn, the systemic inflammation promotes endothelial dysfunction, contributing to multiple end-organ damage.

Conclusion. The deepening one`s knowledge of various pathomechanisms of LV remodeling and related myocardial dysfunction in HF patients is an important prerequisite for identifying new perspectives on further fundamental research аnd more rational designing of future clinical trials.

https://doi.org/10.31612/2616-4868.3(21).2022.11
ARTICLE PDF

References

Libby, P., Bonow, R. O., Mann, D. L., Tomaselli, G. F., Bhatt, D., & Solomon, S. D. (2022). Braunwald's heart disease, single volume: A textbook of cardiovascular medicine (12th ed.). Elsevier.

Felker, G. M., & Mann, D. L. (2020). Heart failure: A companion to Braunwald's heart disease. Elsevier.

McDonagh, T. A., Metra, M., Adamo, M., Gardner, R. S., Baumbach, A., Böhm, M., Burri, H., Butler, J., Čelutkienė, J., Chioncel, O., Cleland, J., Coats, A., Crespo-Leiro, M. G., Farmakis, D., Gilard, M., Heymans, S., Hoes, A. W., Jaarsma, T., Jankowska, E. A., Lainscak, M., … ESC Scientific Document Group (2021). 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. European heart journal, 42(36), 3599–3726. https://doi.org/10.1093/eurheartj/ehab368

Heidenreich, P. A., Bozkurt, B., Aguilar, D., Allen, L. A., Byun, J. J., Colvin, M. M., Deswal, A., Drazner, M. H., Dunlay, S. M., Evers, L. R., Fang, J. C., Fedson, S. E., Fonarow, G. C., Hayek, S. S., Hernandez, A. F., Khazanie, P., Kittleson, M. M., Lee, C. S., Link, M. S., Milano, C. A., … Yancy, C. W. (2022). 2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation, 145(18), e895–e1032. https://doi.org/10.1161/CIR.0000000000001063

Gevaert, A. B., Boen, J., Segers, V. F., & Van Craenenbroeck, E. M. (2019). Heart Failure With Preserved Ejection Fraction: A Review of Cardiac and Noncardiac Pathophysiology. Frontiers in physiology, 10, 638. https://doi.org/10.3389/fphys.2019.00638

Krueger, W., Bender, N., Haeusler, M., & Henneberg, M. (2021). The role of mechanotransduction in heart failure pathobiology-a concise review. Heart failure reviews, 26(4), 981–995. https://doi.org/10.1007/s10741-020-09915-1

Savarese, G., Stolfo, D., Sinagra, G., & Lund, L. H. (2022). Heart failure with mid-range or mildly reduced ejection fraction. Nature reviews. Cardiology, 19(2), 100–116. https://doi.org/10.1038/s41569-021-00605-5

Triposkiadis, F., Xanthopoulos, A., Parissis, J., Butler, J., & Farmakis, D. (2022). Pathogenesis of chronic heart failure: cardiovascular aging, risk factors, comorbidities, and disease modifiers. Heart failure reviews, 27(1), 337–344. https://doi.org/10.1007/s10741-020-09987-z

Yang, D., Liu, H. Q., Liu, F. Y., Tang, N., Guo, Z., Ma, S. Q., An, P., Wang, M. Y., Wu, H. M., Yang, Z., Fan, D., & Tang, Q. Z. (2020). The Roles of Noncardiomyocytes in Cardiac Remodeling. International journal of biological sciences, 16(13), 2414–2429. https://doi.org/10.7150/ijbs.47180

González, A., Richards, A. M., de Boer, R. A., Thum, T., Arfsten, H., Hülsmann, M., Falcao-Pires, I., Díez, J., Foo, R., Chan, M. Y., Aimo, A., Anene-Nzelu, C. G., Abdelhamid, M., Adamopoulos, S., Anker, S. D., Belenkov, Y., Gal, T. B., Cohen-Solal, A., Böhm, M., Chioncel, O., … Bayés-Genís, A. (2022). Cardiac remodelling - Part 1: From cells and tissues to circulating biomarkers. A review from the Study Group on Biomarkers of the Heart Failure Association of the European Society of Cardiology. European journal of heart failure, 10.1002/ejhf.2493. Advance online publication. https://doi.org/10.1002/ejhf.2493

Kosiński, A., Piwko, G. M., Kamiński, R., Nowicka, E., Kaczyńska, A., Zajączkowski, M., Czerwiec, K., Gleinert-Rożek, M., Karnecki, K., & Gos, T. (2021). Arterial hypertension and remodeling of the right ventricle. Folia morphologica, 10.5603/FM.a2021.0038. Advance online publication. https://doi.org/10.5603/FM.a2021.0038

Abdin, A., Bauersachs, J., Frey, N., Kindermann, I., Link, A., Marx, N., Lainscak, M., Slawik, J., Werner, C., Wintrich, J., & Böhm, M. (2021). Timely and individualized heart failure management: need for implementation into the new guidelines. Clinical research in cardiology : official journal of the German Cardiac Society, 110(8), 1150–1158. https://doi.org/10.1007/s00392-021-01867-2

Mann, D. L., & Felker, G. M. (2021). Mechanisms and Models in Heart Failure: A Translational Approach. Circulation research, 128(10), 1435–1450. https://doi.org/10.1161/CIRCRESAHA.121.318158

Urmaliya, V., & Franchelli, G. (2017). A multidimensional sight on cardiac failure: uncovered from structural to molecular level. Heart failure reviews, 22(3), 357–370. https://doi.org/10.1007/s10741-017-9610-y

Alam, P., Maliken, B. D., Jones, S. M., Ivey, M. J., Wu, Z., Wang, Y., & Kanisicak, O. (2021). Cardiac Remodeling and Repair: Recent Approaches, Advancements, and Future Perspective. International journal of molecular sciences, 22(23), 13104. https://doi.org/10.3390/ijms222313104

Lu, P., Ding, F., Xiang, Y. K., Hao, L., & Zhao, M. (2022). Noncoding RNAs in Cardiac Hypertrophy and Heart Failure. Cells, 11(5), 777. https://doi.org/10.3390/cells11050777

Yang, T., Long, T., Du, T., Chen, Y., Dong, Y., & Huang, Z. P. (2021). Circle the Cardiac Remodeling With circRNAs. Frontiers in cardiovascular medicine, 8, 702586. https://doi.org/10.3389/fcvm.2021.702586

Mongirdienė, A., Skrodenis, L., Varoneckaitė, L., Mierkytė, G., & Gerulis, J. (2022). Reactive Oxygen Species Induced Pathways in Heart Failure Pathogenesis and Potential Therapeutic Strategies. Biomedicines, 10(3), 602. https://doi.org/10.3390/biomedicines10030602

He, X., Du, T., Long, T., Liao, X., Dong, Y., & Huang, Z. P. (2022). Signaling cascades in the failing heart and emerging therapeutic strategies. Signal transduction and targeted therapy, 7(1), 134. https://doi.org/10.1038/s41392-022-00972-6

Segers, V., Brutsaert, D. L., & De Keulenaer, G. W. (2018). Cardiac Remodeling: Endothelial Cells Have More to Say Than Just NO. Frontiers in physiology, 9, 382. https://doi.org/10.3389/fphys.2018.00382

Zuchi, C., Tritto, I., Carluccio, E., Mattei, C., Cattadori, G., & Ambrosio, G. (2020). Role of endothelial dysfunction in heart failure. Heart failure reviews, 25(1), 21–30. https://doi.org/10.1007/s10741-019-09881-3

Gogiraju, R., Bochenek, M. L., & Schäfer, K. (2019). Angiogenic Endothelial Cell Signaling in Cardiac Hypertrophy and Heart Failure. Frontiers in cardiovascular medicine, 6, 20. https://doi.org/10.3389/fcvm.2019.00020

Colliva, A., Braga, L., Giacca, M., & Zacchigna, S. (2020). Endothelial cell-cardiomyocyte crosstalk in heart development and disease. The Journal of physiology, 598(14), 2923–2939. https://doi.org/10.1113/JP276758

Heusch G. (2022). Coronary blood flow in heart failure: cause, consequence and bystander. Basic research in cardiology, 117(1), 1. https://doi.org/10.1007/s00395-022-00909-8

Brandt, M. M., Cheng, C., Merkus, D., Duncker, D. J., & Sorop, O. (2021). Mechanobiology of Microvascular Function and Structure in Health and Disease: Focus on the Coronary Circulation. Frontiers in physiology, 12, 771960. https://doi.org/10.3389/fphys.2021.771960

Lugo-Gavidia, L. M., Burger, D., Matthews, V. B., Nolde, J. M., Galindo Kiuchi, M., Carnagarin, R., Kannenkeril, D., Chan, J., Joyson, A., Herat, L. Y., Azzam, O., & Schlaich, M. P. (2021). Role of Microparticles in Cardiovascular Disease: Implications for Endothelial Dysfunction, Thrombosis, and Inflammation. Hypertension (Dallas, Tex. : 1979), 77(6), 1825–1844. https://doi.org/10.1161/HYPERTENSIONAHA.121.16975

Triposkiadis, F., Butler, J., Abboud, F. M., Armstrong, P. W., Adamopoulos, S., Atherton, J. J., Backs, J., Bauersachs, J., Burkhoff, D., Bonow, R. O., Chopra, V. K., de Boer, R. A., de Windt, L., Hamdani, N., Hasenfuss, G., Heymans, S., Hulot, J. S., Konstam, M., Lee, R. T., Linke, W. A., … De Keulenaer, G. W. (2019). The continuous heart failure spectrum: moving beyond an ejection fraction classification. European heart journal, 40(26), 2155–2163. https://doi.org/10.1093/eurheartj/ehz158

Aimo, A., Vergaro, G., González, A., Barison, A., Lupón, J., Delgado, V., Richards, A. M., de Boer, R. A., Thum, T., Arfsten, H., Hülsmann, M., Falcao-Pires, I., Díez, J., Foo, R., Chan, M., Anene-Nzelu, C. G., Abdelhamid, M., Adamopoulos, S., Anker, S. D., Belenkov, Y., … Bayes-Genis, A. (2022). Cardiac remodelling - Part 2: Clinical, imaging and laboratory findings. A review from the Study Group on Biomarkers of the Heart Failure Association of the European Society of Cardiology. European journal of heart failure, 10.1002/ejhf.2522. Advance online publication. https://doi.org/10.1002/ejhf.2522

Oki, T., Miyoshi, H., Oishi, Y., Iuchi, A., Kusunose, K., Yamada, H., & Klein, A. L. (2018). Heart Failure With Preserved Ejection Fraction - Time for a Paradigm Shift Beyond Diastolic Function. Circulation reports, 1(1), 8–16. https://doi.org/10.1253/circrep.CR-18-0017

Boulet, J., Massie, E., & Rouleau, J. L. (2021). Heart Failure With Midrange Ejection Fraction-What Is It, If Anything?. The Canadian journal of cardiology, 37(4), 585–594. https://doi.org/10.1016/j.cjca.2020.11.013

Henkens, M., Weerts, J., Verdonschot, J., Raafs, A. G., Stroeks, S., Sikking, M. A., Amin, H., Mourmans, S., Geraeds, C., Sanders-van Wijk, S., Barandiarán Aizpurua, A., Uszko-Lencer, N., Krapels, I., Wolffs, P., Brunner, H. G., van Leeuwen, R., Verhesen, W., Schalla, S. M., van Stipdonk, A., Knackstedt, C., … Heymans, S. (2022). Improving diagnosis and risk stratification across the ejection fraction spectrum: the Maastricht Cardiomyopathy registry. ESC heart failure, 9(2), 1463–1470. https://doi.org/10.1002/ehf2.13833

Ijaz, T., & Burke, M. A. (2021). BET Protein-Mediated Transcriptional Regulation in Heart Failure. International journal of molecular sciences, 22(11), 6059. https://doi.org/10.3390/ijms22116059

Plitt, G. D., Spring, J. T., Moulton, M. J., & Agrawal, D. K. (2018). Mechanisms, diagnosis, and treatment of heart failure with preserved ejection fraction and diastolic dysfunction. Expert review of cardiovascular therapy, 16(8), 579–589. https://doi.org/10.1080/14779072.2018.1497485

Omote, K., Verbrugge, F. H., & Borlaug, B. A. (2022). Heart Failure with Preserved Ejection Fraction: Mechanisms and Treatment Strategies. Annual review of medicine, 73, 321–337. https://doi.org/10.1146/annurev-med-042220-022745

Tedesco, B., Cristofani, R., Ferrari, V., Cozzi, M., Rusmini, P., Casarotto, E., Chierichetti, M., Mina, F., Galbiati, M., Piccolella, M., Crippa, V., & Poletti, A. (2022). Insights on Human Small Heat Shock Proteins and Their Alterations in Diseases. Frontiers in molecular biosciences, 9, 842149. https://doi.org/10.3389/fmolb.2022.842149

Das, P., Thandavarayan, R. A., Watanabe, K., Velayutham, R., & Arumugam, S. (2021). Right ventricular failure: a comorbidity or a clinical emergency?. Heart failure reviews, 10.1007/s10741-021-10192-9. Advance online publication. https://doi.org/10.1007/s10741-021-10192-9

Bayes-Genis, A., Bisbal, F., Núñez, J., Santas, E., Lupón, J., Rossignol, P., & Paulus, W. (2020). Transitioning from Preclinical to Clinical Heart Failure with Preserved Ejection Fraction: A Mechanistic Approach. Journal of clinical medicine, 9(4), 1110. https://doi.org/10.3390/jcm9041110

Tini, G., Cannatà, A., Canepa, M., Masci, P. G., Pardini, M., Giacca, M., Sinagra, G., Marchionni, N., Del Monte, F., Udelson, J. E., & Olivotto, I. (2022). Is heart failure with preserved ejection fraction a 'dementia' of the heart?. Heart failure reviews, 27(2), 587–594. https://doi.org/10.1007/s10741-021-10114-9

Mesquita, E. T., Jorge, A. J., Souza Junior, C. V., & Cassino, J. P. (2014). Systems biology applied to heart failure with normal ejection fraction. Arquivos brasileiros de cardiologia, 102(5), 510–517. https://doi.org/10.5935/abc.20140062

Wang, Y., Zhang, J., Wang, Z., Wang, C., & Ma, D. (2022). Endothelial-cell-mediated mechanism of coronary microvascular dysfunction leading to heart failure with preserved ejection fraction. Heart failure reviews, 10.1007/s10741-022-10224-y. Advance online publication. https://doi.org/10.1007/s10741-022-10224-y

Tromp, J., Khan, M., Mentz, R. J., O'Connor, C. M., Metra, M., Dittrich, H. C., Ponikowski, P., Teerlink, J. R., Cotter, G., Davison, B., Cleland, J., Givertz, M. M., Bloomfield, D. M., Van Veldhuisen, D. J., Hillege, H. L., Voors, A. A., & van der Meer, P. (2017). Biomarker Profiles of Acute Heart Failure Patients With a Mid-Range Ejection Fraction. JACC. Heart failure, 5(7), 507–517. https://doi.org/10.1016/j.jchf.2017.04.007

Adamo, L., Yu, J., Rocha-Resende, C., Javaheri, A., Head, R. D., & Mann, D. L. (2020). Proteomic Signatures of Heart Failure in Relation to Left Ventricular Ejection Fraction. Journal of the American College of Cardiology, 76(17), 1982–1994. https://doi.org/10.1016/j.jacc.2020.08.061

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.