ulcerative colitis

How to Cite

Vasylyeva, I. M., Nakonechna, O. A., Popova, L. D., Solomko, O. V., HarbarK. В., & Yarmysh, N. V. (2023). THE CONTENT OF PROSTANOIDS AND CYCLOOXYGENASES IN COLON TISSUE IN EXPERIMENTAL ULCERATIVE COLITIS. Clinical and Preventive Medicine, (8), 91-97.


Introduction. The article examines changes in the content of prostaglandins and cyclooxygenases (COX) in colon tissue in ulcerative colitis induced by 2,4-dinitrobenzene sulfonic acid (DNBS) in a 50% ethanol solution. Based on the obtained results, the authors conclude that changes in the content of the studied parameters, except PGI2, are due to ethanol effect, not DNBS. Both COX isozymes are expressed in normal colon and reduced in ulcerative colitis.

The aim. To study the prostanoids (PGE2, PGI2, PGF2α, TBX2 and 8-iso-PGF2α) and COX-1 and -2 contents in colon tissue in experimental ulcerative colitis.

Materials and methods. The determination of prostanoids and cyclooxygenases contents in colon tissue by enzyme immunosorbent assay was carried out on three groups of sexually mature laboratory rats of both sexes of the WAG population (1st control group – intrarectal injection of saline; 2nd control group – injection of 50% ethanol; experimental group – injection of DNBS in 50% ethanol).

Results. PGE2 and PGI2 contents in colon tissue of experimental group rats were statistically significantly higher compared 1st and 2nd control groups. The content of PGE2 was also increased in 2nd control group versus 1st control one. The increasing PGI2 in 2nd control group versus 1st control was not significant. TBX2 and PGF2α contents in experimental and 2nd control groups were significantly lower compared 1st control. 8-iso-PGF2α (non-enzymatically derived prostanoid) level in experimental group rats was significantly higher compared both controls. 8-iso-PGF2α content in 2nd control group was significantly higher compared 1st one. The content of both COX isoforms in colon tissue in experimental group and 2nd control group rats was significantly lower compared to 1st control group.

Conclusions. Both isoforms of COX are expressed in control group colon indicating COX-2 involvement in supporting physiological functions of normal colon tissue. All studied indicators changes, except PGI2, are due to ethanol, not DNBS. Both 50% ethanol and DNBS in 50% ethanol stimulate lipid peroxidation, confirmed by significant increase in 8-iso-PGF2α content. PGE2 and PGF2α contents changes against the background of reduced levels of COX-1 and COX-2 in experimental ulcerative colitis are most likely an adaptive response aimed at maintaining colon homeostasis. PGI2 content changes are due to DNBS, and not to ethanol.


Miao X-P., Ouyang Q., Li H-Y, Wen Z-H., Zhang D-K., Cui X-Y. (2008). Role of selective cyclooxygenase -2 inhibitors in exacerbation of inflammatory bowel disease: a systematic review and meta-analysis. Current Therapeutic Research, 69(3), 181-191. doi:10.1016/j.curtheres.2008.06.009.

Dai L., King D., Perera D. S., Lubowski D. Z., Burcher E., Liu L. (2015). Inverse expression of prostaglandin E2-related enzymes highlights differences between diverticulitis and inflammatory bowel disease. Dig Dis Sci., 60(5), 1236-46. doi: 10.1007/s10620-014-3478-7.

Park Y.S. (2007). COX-2 inhibitors in inflammatory bowel disease: friends or foes?, Korean J Gastroenterol., 50 (6), 350-355. PMID: 18159171

Lejeune M., Leung P., Beck P. L., Chadee K. (2010). Role of EP4 receptor and prostaglandin transporter in prostaglandin E2-induced alteration in colonic epithelial barrier integrity. Am J Physiol Gastrointest Liver Physiol., 299(5), G1097-105. doi: 10.1152/ajpgi.00280.2010

Nakase H, Fujiyama Y, Oshitani N, Oga T, Nonomura K, Matsuoka T, Esaki Y, Murayama T, Teramukai S, Chiba T, Narumiya S. (2010). Effect of EP4 agonist (ONO-4819CD) for patients with mild to moderate ulcerative colitis refractory to 5-aminosalicylates: a randomized phase II, placebo-controlled trial, Inflamm Bowel Dis., 16(5), 731-3. doi: 10.1002/ibd.21080

Ajuebor M. N., Singh A., Wallace J. L. (2000). Cyclooxygenase-2-derived prostaglandin D(2) is an early anti- inflammatory signal in experimental colitis. Am J Physiol Gastrointest Liver Physiol., 279(1), G238-44. doi: 10.1152/ajpgi.2000.279.1.G238.

Zamuner S. R., Warrier N., Buret A. G., MacNaughton W. K, Wallace J. L. (2003). Cyclooxygenase 2 mediates post-inflammatory colonic secretory and barrier dysfunction. Gut., 52, 1714–1720. doi10.1136/gut.52.12.1714

Martín A.R., Villegas I., Sánchez-Hidalgo M., de la Lastra C.A. (2006). The effects of resveratrol, a phytoalexin derived from red wines, on chronic inflammation induced in an experimentally induced colitis model. Br J Pharmacol., 147(8), 873–885. doi: 10.1038/sj.bjp.0706469

Dong WG., Mei Q., Yu JP, Xu JM, Xiang L., Xu Y. (2003). Effects of melatonin on the expression of iNOS and COX-2 in rat models of colitis. World J Gastroenterol, 9 (6), 1307-1311. doi: 10.3748/wjg.v9.i6.1307

Maseda D., Ricciotti, E. (2020). NSAID-Gut Microbiota Interactions. Front Pharmacol, Aug 7:11 11, 1153. doi: 10.3389/fphar.2020.01153.

Kirkby N.S., Chan M.V., Zaiss A.K., Garcia-Vaz E., Jiao J., Berglund L.M., Verdu E.F., Ahmetaj-Shala B., Wallace J.L., Herschman H.R., Gomez M.F., Mitchell J.A. (2016). Systematic study of constitutive cyclooxygenase-2 expression: Role of NF-κB and NFAT transcriptional pathways. Proc. Natl. Acad. Sci. USA, Dec 28, 113 (2), 434-439. doi: 10.1073/pnas.1517642113

Zielińska A.K., Sałaga M., Siwiński P., Włodarczyk M., Dziki A., Fichna J. (2021). Oxidative Stress Does Not Influence Subjective Pain Sensation in Inflammatory Bowel Disease Patients. Antioxidants (Basel), 10(8), 1237. doi: 10.3390/antiox10081237

Wallace, J.L., Le. T., Carter, L., Appleyard, C.B., & Beck, P.L. (1995). Hapten-induced chronic colitis in the rat: Alternatives to trinitrobenzene sulfonic acid. J. Pharmacol. Toxicol. Methods, 33(4), 237-239. DOI: 10.1016/1056- 8719(95)00001-x

Sanovic S., Lamb D.P., Blennerhassett M.G. (1999). Damage to the Enteric Nervous System in Experimental Colitis. The American Journal of Pathology, 155(4), 1051-1057. doi: 10.1016/S0002-9440(10)65207-8

Morampudi V., Bhinder G., Wu X., DaiC., Sham Ho P., Vallance B. A., Jacobson R. (2014). DNBS/TNBS colitis models: providing insights into inflammatory bowel disease and effects of dietary fat. J. Vis. Exp., 27(84), e51297. doi: 10.3791/51297

Norel X., Sugimoto Y., Ozen G., Abdelazeem H., Amgoud Y., Bouhadoun A., Bassiouni W., Goepp M., Mani S., Manikpurage H., Senbel A., Longrois D., Heinemann A., Yao C., Clapp L.H. (2020). International Union of Basic and Clinical Pharmacology. CIX. Differences and Similarities between Human and Rodent Prostaglandin E2 Receptors (EP1-4) and Prostacyclin Receptor (IP): Specific Roles in Pathophysiologic Conditions. Pharmacol Rev., 72(4), 910-968. doi: 10.1124/pr.120.019331.

Bjarnason I., Scarpignato C., Holmgren E., Olszewski M., Rainsford K. D., Lanas A. (2018). Mechanisms of Damage to the Gastrointestinal Tract From Nonsteroidal Anti-Inflammatory Drugs. Gastroenterology, 154, 500–514. 10.1053/j.gastro.2017.10.049

Fornai M., Blandizzi C., Antonioli L., Colucci R., Bernardini N., Segnani C., De Ponti F., Tacca G.M. (2006). Differential role of cyclooxygenase 1 and 2 isoforms in the modulation of colonic neuromuscular function in experimental inflammation. J Pharmacol Exp Ther., 317, 938–945. doi:10.1124/jpet.105.098350

Takeuchi K., Amagase K. (2018). Roles of Cyclooxygenase, Prostaglandin E2 and EP Receptors in Mucosal Protection and Ulcer Healing in the Gastrointestinal Tract. Curr. Pharm., 24 (18), 2002–2011. doi: 10.2174/1381612824666180629111227

Gao L, Yu Q, Zhang H, Wang Z, Zhang T, Xiang J, Yu S, Zhang S, Wu H, Xu Y, Wang Z, Shen L, Shu G, Chen YG, Liu H, Shen L, Li B. (2021). A resident stromal cell population actively restrains innate immune response in the propagation phase of colitis pathogenesis in mice. Sci Transl Med., Jul 21, 13(603), eabb5071. doi: 10.1126/scitranslmed.abb5071.

Porras M., Martín M.T., Torres R., Vergara P. (2006). Cyclical upregulated iNOS and long-term downregulated nNOS are the bases for relapse and quiescent phases in a rat model of IBD. Gastrointestinal and Liver Physiology, 290(3), G423-430.

Sigthorsson G., Simpson R.J., Walley M., Anthony A., Foster R., Hotz-Behoftsitz Ch., Palizban A., Pombo J., Watts Jo, Morham S.G., Bjarnason, I. (2002). COX-1 and 2, intestinal integrity, and pathogenesis of nonsteroidal anti-inflammatory drug enteropathy in mice. Gastroenterology, 122 (7), 1913-1923. doi: 10.1053/gast.2002.33647.

Otani T., Yamaguchi K., Scherl E., Du B., Tai H.H., Greifer M., Petrovic L., Daikoku T., Dey S.K., Subbaramaiah K., Dannenberg A.J. (2006). Levels of NAD(+)-dependent 15- hydroxyprostaglandin dehydrogenase are reduced in inflammatory bowel disease: evidence for involvement of TNF-alpha. Am J Physiol Gastrointest Liver Physiol, 290(2), G. 361-368. doi: 10.1152/ajpgi.00348.2005

Burakoff R., Nastos E., Won S. (1990). Effects of PGF2 alpha anGasd of indomethacin on rabbit small and large intestinal motility in vivo. Gastrointestinal and Liver Physiology, 258 (2), G231-237.

Park C.G., Kim Y.D., Kim M.Y., Koh J.W., Jun J.Y., Yeum C.H., So I., Choi S. (2011). Effects of prostaglandin F2α on small intestinal interstitial cells of Cajal. World J Gastroenterol, 17(9), 1143–1151. doi: 10.3748/wjg.v17.i9.1143

Safdari B.K., Sia T.C., Wattchow D.A., Smid S.D. (2016). Effects of proinflammatoty cytokines, lipopolysaccharide and COX-2mediators on human colonic neuromuscular function and epithelial permeability. Cytokine, 83, 231-238. doi: 10.1016/j.cyto.2016.04.017.

Mizoguchi А. (2012). Animal Models of Inflammatory Bowel Disease. Atsushi Mizoguchi Progress in Molecular Biology and Translational Science, 105, 263-320.

Volkov V. I. (2000). Activity of the prostanoids system in inflammatory diseases of the colon. Klin Khir., 10, 30-1. PMID: 11247426

Hamabata T., Nakamura T., Masuko S., Maeda S., Murata T. (2018). Production of lipid mediators across different disease stages of dextran sodium sulfate-induced colitis in mice. J Lipid Res., 59, 586–595. doi:10.1194/jlr.M079095.

Takahashi K., Nammour T.M., Fukunaga M., Ebert J., Morrow J.D, Roberts L.J., Hoover R.L., Badr K.F. (1992). Glomerular actions of a free radical-generated novel prostaglandin, 8-epi-prostaglandin F2 alpha, in the rat. Evidence for interaction with thromboxane A2 receptors. J Clin Invest., 90(1), 136-141.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.