The modern concept of intensive therapy of coagulopathy, which is complicate polytrauma and shock
ARTICLE PDF (Українська)

Keywords

polytrauma, shock, coagulopathy

How to Cite

Cherniy , V. (2019). The modern concept of intensive therapy of coagulopathy, which is complicate polytrauma and shock. Clinical and Preventive Medicine, (2), 4-15. https://doi.org/10.31612/2616-4868.2(8).2019.01

Abstract

The statute presents the fourth edition (The European guideline on management of major bleeding and coagulopathy following trauma: fourth edition, 2016) of European recommendations on the treatment of severe blood loss and coagulopathy caused by injury. More than 50% of all trauma patients with a fatal outcome die within 24 hours after injury. After hospitalization in a third of patients with trauma, the bleeding is coagulopathic. They significantly increase the risk of multiple organ failure and death compared with patients with similar trauma in the absence of coagulopathy. Early acute coagulopathy associated with traumatic injury is multifactorial: 1) hemorrhage induced shock; 2) tissue damage with the release of tissue thromboplastin and the development of thrombinemia; 3) activation of anticoagulant and fibrinolytic systems. The severity of coagulation disorders is determined by the influence of environmental factors, metabolic disorders (acidosis, hypothermia, tissue hypoperfusion and consumption coagulopathy) and therapeutic strategy. Coagulopathies can be associated with trauma to the brain, liver, and patient's individual characteristics, which include age, heredity, comorbidities, and medication, especially oral anticoagulants. Coagulation monitoring (internationally normalized ratio (INR) and APTT), characterizes only the beginning of the 2nd phase of blood coagulation, and represents the generation of only the first 4% of thrombin. Therefore, the performance of a normal coagulogram may be normal, although the general condition of the blood coagulation system is pathological. Late diagnosis of traumatic coagulopathy may affect the outcome. A new concept of reanimation of patients with massive bleeding has been presented, the immediate introduction of coagulation components (RBC, native plasma and platelets in a 1: 1: 1 ratio), tranexamic acid, fresh frozen plasma, fibrinogen concentrate, desmopressin, prothrombin complex concentrate, recombinant activated coagulation factor VII (rFVIIa). Currently, the issue of using fresh whole blood for resuscitation in case of injury and massive blood loss is relevant.

https://doi.org/10.31612/2616-4868.2(8).2019.01
ARTICLE PDF (Українська)

References

Savvin YU. N., Kudryavtsev B. P. (2015). Klinicheskiye rekomendatsii po okazaniyu meditsinskoy pomoshchi postradavshim s politravmoy v CHS [Clinical recommendations for the provision of medical care to victims of polytrauma in an emergency]. Moskva, 66.

Yovenko I. A., Kobelyatskiy YU. YU., Tsarev A. V., Kuz'mova Ye. A. (2016). Intensivnaya terapiya krovopoteri, koagulopatii i gipovolemicheskogo shoka pri politravme [Intensive therapy of blood loss, coagulopathy and hypovolemic shock in polytrauma]. Medicine of unreadable stations, 4, 23-35.

World Health Organization. Cause-specific mortality and morbidity (2009). Available at: http://www.who.int/whosis/whostat/EN_WHS09_Table2.pdf. Accessed 30 Jan 2015.

Maegele M., Schochl H., Cohen M. J. (2014). An update on the coagulopathy of trauma. Shock, 41, Suppl 1, 21–5.

Frith D., Goslings J. C., Gaarder C., Maegele M., Cohen M. J., Allard S. (2010). Definition and drivers of acute traumatic coagulopathy: clinical and experimental investigations. J Thromb Haemost, 8, 1919–25.

Khan S., Davenport R., Raza I., Glasgow S., De’Ath H. D., Johansson P. I. (2015). Damage control resuscitation using blood component therapy in standard doses has a limited effect on coagulopathy during trauma hemorrhage. Intensive Care Med., 41, 239–47.

Cap A., Hunt B. J. (2015). The pathogenesis of traumatic coagulopathy. Anaesthesia, 70, 1, 96–101.

Rolf Rossaint, Bertil Bouillon, Vladimir Cerny, Timothy J. Coats, Jacques Duranteau, Enrique Fernández-Mondéjar, Daniela Filipescu, Beverley J. Hunt, RadkoKomadina, Giuseppe Nardi, Edmund A. M. Neugebauer, Yves Ozier, Louis Riddez, Arthur Schultz, Jean-Louis Vincent and Donat R. Spahn Email author (2016). The European guideline on management of major bleeding and coagulopathy following trauma: fourth edition. Critical Care, 2, 100. https://doi.org/10.1186/s13054-016-1265-x©

KraghJr J. F., Walters T. J., Baer D. G., Fox C. J., Wade C. E., Salinas J. (2009). Survival with emergency tourniquet use to stop bleeding in major limb trauma. Ann Surg., 249, 1–7.

Mayglothling J., Duane T. M., Gibbs M., McCunn M., Legome E., Eastman A. L. (2012). Emergency tracheal intubation immediately following traumatic injury: an Eastern Association for the Surgery of Trauma practice management guideline. J Trauma Acute Care Surg., 73, 5, 4, 333–40.

Damiani E., Adrario E., Girardis M., Romano R., Pelaia P., Singer M. (2014). Arterial hyperoxia and mortality in critically ill patients: a systematic review and meta-analysis. Crit Care, 18, 711.

Rincon F., Kang J., Vibbert M., Urtecho J., Athar M. K., Jallo J. (2014). Significance of arterial hyperoxia and relationship with case fatality in traumatic brain injury: a multicentre cohort study. J NeurolNeurosurgPsychiatry, 85, 799–805.

Huber-Wagner S., Mand C., Ruchholtz S., Kuhne C. A., Holzapfel K., Kanz K. G. (2014). Effect of the localisation of the CT scanner during trauma resuscitation on survival. A retrospective, multicentre study Injury, 45, 3, 76–82.

Caputo N., Fraser R., Paliga A., Kanter M., Hosford K., Madlinger R. (2013). Triage vital signs do not correlate with serum lactate or base deficit, and are less predictive of operative intervention in penetrating trauma patients: a prospective cohort study. Emerg Med J., 30, 546–50.

Davenport R., Manson J., De’Ath H., Platton S., Coates A., Allard S. (2011). Functional definition and characterization of acute traumatic coagulopathy. Crit Care Med., 39 (12), 2652–8.

Brenner M., Stein D. M., Hu P. F., Aarabi B., Sheth K., Scalea T. M. (2012). Traditional systolic blood pressure targets underestimate hypotension-induced secondary brain injury. J TraumaAcuteCareSurg., 72 (5), 1135–9.

Hagemo J. S., Christiaans S. C., Stanworth S. J., Brohi K., Johansson P. I., Goslings J. C. (2015). Detection of acute traumatic coagulopathy and massive transfusion requirements by means of rotational thromboelastometry: an international prospective validation study. Crit Care, 19, 97.

Perel P., Roberts I., Ker K. (2013). Colloids versus crystalloids for fluid resuscitation in critically ill patients. Cochrane Database Syst Rev., 2.

Cherniy V. I. Kolesnikov A. N., Oleynikov K. N., Yegorov A. A., Biloshapka V. A. (2012). Ratsional'naya infuzionnaya terapiya [Rational infusion therapy]. Donetsk, 182.

Glumcher F. S. (2015). Sbalansirovannaya infuzionnaya terapiya gipovolemii i shoka: vozmozhno li uluchshit' klinicheskiye rezul'taty?

[Balanced infusion therapy of hypovolemia and shock: is it possible to improve clinical results?] Acute and emergency conditions in the practice of a doctor, 6, 40-46.

Chowdhury A. H., Cox E. F., Francis S. T., Lobo D. N. (2012). A randomized, controlled, double-blind crossover study on the effects of 2-L infusions of 0.9 % saline and plasma-lyte(R) 148 on renal blood flow velocity and renal cortical tissue perfusion in healthy volunteers. AnnSurg., 256, 18–24.

Kutcher M. E., Howard B. M., Sperry J. L., Hubbard A. E., Decker A. L., Cuschieri J. (2015). Evolving beyond the vicious triad: differential mediation of traumatic coagulopathy by injury, shock, and resuscitation. J Trauma Acute Care Surg., 78(3), 516–23.

Theusinger O. M., Wanner G. A., Emmert M. Y., Billeter A., Eismon J., Seifert B. (2011). Hyperfibrinolysis diagnosed by rotational thromboelastometry (ROTEM) is associated with higher mortality in patients with severe trauma. AnesthAnalg., 113(5), 1003–12.

Kelly J. M., Callum J. L., Rizoli S. B. (2013). 1:1:1 - Warranted or wasteful? Even where appropriate, high ratio transfusion protocols are costly: early transition to individualized care benefits patients and transfusion services. ExpertRevHematol., 6(6), 631–3.

Hagemo J. S., Stanworth S., Juffermans N. P, Brohi K., Cohen M., Johansson P. I. (2014). Prevalence, predictors and outcome of hypofibrinogenaemia in trauma: a multicentre observational study. Crit Care, 18(2), R52.

Fergusson D. A., Hebert P. C., Mazer C. D., Fremes S., MacAdams C., Murkin J. M. (2008). A comparison of aprotinin and lysine analogues in high-risk cardiac surgery. N Engl J Med., 358(22), 2319–31.

Sihler K. C., Napolitano L. M. (2010). Complications of massive transfusion. Chest, 137(1), 209–20.

Weber C. F., Dietrich W., Spannagl M., Hofstetter C., Jambor C. (2010). A point-of-care assessment of the effects of desmopressin on impaired platelet function using multiple electrode whole-blood aggregometry in patients after cardiac surgery. AnesthAnalg., 110(3), 702–7.

Singleton T., Kruse-Jarres R., Leissinger C. (2010). Emergency department care for patients with hemophilia and von Willebrand disease. J Emerg Med., 39(2), 158–65.

Ng K. F., Cheung C. W., Lee Y., Leung S. W. (2011). Low-dose desmopressin improves hypothermia-induced impairment of primary haemostasis in healthy volunteers. Anaesthesia, 66(11), 999–1005.

Sarode R., Milling Jr T. J., Refaai M. A., Mangione A., Schneider A. , Durn B. L., et al. (2013). Efficacy and safety of a 4-factor prothrombin complex concentrate in patients on vitamin K antagonists presenting with major bleeding: a randomized, plasma-controlled, phase IIIb study. Circulation, 128(11), 1234–43.

Goldstein J. N., Refaai M. A., Milling Jr T. J., Lewis B., Goldberg-Alberts R., Hug B. A. (2015). Four-factor prothrombin complex concentrate versus plasma for rapid vitamin K antagonist reversal in patients needing urgent surgical or invasive interventions: a phase 3b, open-label, non-inferiority, randomised trial. Lancet, 385(9982), 2077–87.

Edavettal M., Rogers A., Rogers F., Horst M., Leng W. (2014). Prothrombin complex concentrate accelerates international normalized ratio reversal and diminishes the extension of intracranial hemorrhage in geriatric trauma patients. AmSurg., 80(4), 372–6.

Baglin T. P., Keeling D. M., Watson H. G. (2006). Guidelines on oral anticoagulation (warfarin): third edition--2005 update. Br J Haematol., 132(3), 277–85.

Mitra B., Cameron P. A., Parr M. J., Phillips L. (2012). Recombinant factor VIIa in trauma patients with the ‘triad of death’. Injury, 43(9), 1409–14.

Zatta A., McQuilten Z., Kandane-Rathnayake R., Isbister J., Dunkley S., McNeil J. (2015). The Australian and New Zealand Haemostasis Registry: ten years of data on off-licence use of recombinant activated factor VII. Blood Transfus., 13(1), 86–99.

Alhazzani W., Lim W., Jaeschke R. Z., Murad M. H., Cade J., Cook D. J. (2013). Heparin thromboprophylaxis in medical-surgical critically ill patients: a systematic review and meta-analysis of randomized trials. Crit Care Med., 41(9), 2088–98.

Lim W., Meade M., Lauzier F., Zarychanski R., Mehta S., Lamontagne F. (2015). Failure of anticoagulant thromboprophylaxis: risk factors in medical-surgical critically ill patients*. Crit Care Med., 43(2), 401–10.

Goforth C. W., Tranberg J. W., Boyer P., Silvestri P. J. (2016). Fresh Whole Blood Transfusion: Military and Civilian Implications. Critical Care Nurse, 36[3], 50-57.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.