IMPACT OF THYRONAMINE ANALOGUE ON LIPID PEROXIDATION IN THE BRAIN OF RATS
ARTICLE PDF (Українська)

Keywords

TAAR1 agonists
modeling of focal ischemic stroke
neuroprotectors
antioxidants

How to Cite

Fedorova, H., Velychko, N., & Bogatyrova, O. (2023). IMPACT OF THYRONAMINE ANALOGUE ON LIPID PEROXIDATION IN THE BRAIN OF RATS. Clinical and Preventive Medicine, (8), 98-107. https://doi.org/10.31612/2616-4868.8.2023.12

Abstract

Introduction. Thyronamines belong to agonists of TAAR1 - trace amine receptors in the brain. The mechanism of activation of the processes of autophagy and neuroplasticity under the action of a synthetic analogue of thyronamines – 4-(4-(2-aminoethoxy)benzyl)aniline is described. Since cerebrovascular disorders remain the most common among neurological diseases, the development and implementation of drugs with neuroprotective properties is considered a promising strategy for the treatment and rehabilitation of patients with ischemic stroke.

The aim of the study was to elucidate the effect of 4-(4-(2-aminoethoxy)benzyl)aniline on the activity of GPO, SOD and the dynamics of changes in the level of TBARS in the brain of rats after modeling focal ischemia by transient occlusion of the left middle cerebral artery.

Materials and methods. The 4-(4-(2-aminoethoxy)benzyl)aniline was synthesized. Changes in the activity of antioxidant enzymes and the accumulation of secondary LPO products that react with thiobarbituric acid (TBARS) in rat brain homogenates were observed after injection of the studied compound in different dosages, as well as 24 hours after modeling focal ischemia. A neurological deficit in experimental rats was detected by the Garcia scale and the vibrissae-evoked forelimb placing test.

Results. Compilation of data made it possible to find a strong relationship between the amount of the injected analogue and the growth of GPO activity in the neurons of healthy animals. In 80% of rats, occlusion of the middle cerebral artery induced evident sensorimotor disorders. 24 hours after the administration of a synthetic analogue of thyronamine in the homogenates of the affected left hemisphere, the activity of glutathione peroxidase significantly increased, and the content of TBARS decreased, and a tendency to activation of SOD was also observed.

Conclusions. The obtained data indicate a positive effect of 4-(4-(2-aminoethoxy) benzyl) aniline on antioxidant enzymes in the intact rat brain and after modeling of focal ischemia, which is the basis to continue research for the purpose of finding long-term neuroprotective effects.

https://doi.org/10.31612/2616-4868.8.2023.12
ARTICLE PDF (Українська)

References

Bunzow, J. R., Sonders, M. S., Arttamangkul, S., Harrison, L. M., Zhang, G., Quigley, D. I., Darland, T., Suchland, K. L., Pasumamula, S., Kennedy, J. L., Olson, S. B., Magenis, R. E., Amara, S. G., & Grandy, D. K. (2001). Amphetamine, 3,4-Methylenedioxymethamphetamine, Lysergic Acid Diethylamide, and Metabolites of the Catecholamine Neurotransmitters Are Agonists of a Rat Trace Amine Receptor. Molecular Pharmacology, 60(6), 1181–1188. https://doi.org/10.1124/mol.60.6.1181

Scanlan, T. S., Suchland, K. L., Hart, M. E., Chiellini, G., Huang, Y., Kruzich, P. J., Frascarelli, S., Crossley, D. A., Bunzow, J. R., Ronca-Testoni, S., Lin, E. T., Hatton, D., Zucchi, R., & Grandy, D. K. (2004). 3-Iodothyronamine is an endogenous and rapid-acting derivative of thyroid hormone. Nature Medicine, 10(6), 638–642. https://doi.org/10.1038/nm1051

Chiellini, G., Nesi, G., Digiacomo, M., Malvasi, R., Espinoza, S., Sabatini, M., Frascarelli, S., Laurino, A., Cichero, E., Macchia, M., Gainetdinov, R. R., Fossa, P., Raimondi, L., Zucchi, R., & Rapposelli, S. (2015). Design, Synthesis, and Evaluation of Thyronamine Analogues as Novel Potent Mouse Trace Amine Associated Receptor 1 (m TAAR1) Agonists. Journal of Medicinal Chemistry, 58(12), 5096–5107. https://doi.org/10.1021/acs.jmedchem.5b00526

Bellusci, L., Runfola, M., Carnicelli, V., Sestito, S., Fulceri, F., Santucci, F., Lenzi, P., Fornai, F., Rapposelli, S., Origlia, N., Zucchi, R., & Chiellini, G. (2020). Endogenous 3-iodothyronamine (T1Am) and synthetic thyronamine-like analog SG-2 act as novel pleiotropic neuroprotective agents through the modulation of SIRT6. Molecules, 25(5), 1–14. https://doi.org/10.3390/molecules25051054

Bellusci, L., Laurino, A., Sabatini, M., Sestito, S., Lenzi, P., Raimondi, L., Rapposelli, S., Biagioni, F., Fornai, F., Salvetti, A., Rossi, L., Zucchi, R., & Chiellini, G. (2017). New insights into the potential roles of 3-Iodothyronamine (T1AM) and newly developed thyronamine-like TAAR1 agonists in neuroprotection. Frontiers in Pharmacology, 8(DEC), 1–17. https://doi.org/10.3389/fphar.2017.00905

Xiong, X. Y., Liu, L., & Yang, Q. W. (2018). Refocusing neuroprotection in cerebral reperfusion era: New challenges and strategies. Frontiers in Neurology, 9(APR), 1–11. https://doi.org/10.3389/fneur.2018.00249

Li, Y., & Zhang, J. (2021). Animal models of stroke. Animal Models and Experimental Medicine, 4(3), 204–219. https://doi.org/10.1002/ame2.12179

Tao, T., Liu, M., Chen, M., Luo, Y., Wang, C., Xu, T., Jiang, Y., Guo, Y., & Zhang, J. H. (2020). Natural medicine in neuroprotection for ischemic stroke: Challenges and prospective. Pharmacology & Therapeutics, 216, 107695. https://doi.org/10.1016/j.pharmthera.2020.107695

Gencarelli, M., Lodovici, M., Bellusci, L., Raimondi, L., & Laurino, A. (2022). Redox Properties of 3-Iodothyronamine (T1AM) and 3-Iodothyroacetic Acid (TA1). International Journal of Molecular Sciences, 23(5), 2718. https://doi.org/10.3390/ijms23052718

Sharipov, R. R., Коtsiuruba, A. V., Kopyak B. S., Sagach V.F. (2014). Induction of oxidative stress in heart mitochondria of brain of focal ischemia-reperfusion and protective effect of ecdysterone. Fiziol. Zh., 60 (3), 11-17.

Encarnacion, A., Horie, N., Keren-Gill, H., Bliss, T. M., Steinberg, G. K., & Shamloo, M. (2011). Long-term behavioral assessment of function in an experimental model for ischemic stroke. Journal of Neuroscience Methods, 196(2), 247–257. https://doi.org/10.1016/j.jneumeth.2011.01.010

Cox, P. A., Reid, M., Leach, A. G., Campbell, A. D., King, E. J., & Lloyd-Jones, G. C. (2017). Base-Catalyzed Aryl-B(OH)2 Protodeboronation Revisited: From Concerted Proton Transfer to Liberation of a Transient Aryl Anion. Journal of the American Chemical Society, 139(37), 13156–13165. https://doi.org/10.1021/jacs.7b07444

Lennox, A. J. J., & Lloyd-Jones, G. C. (2014). Selection of boron reagents for Suzuki-Miyaura coupling. Chemical Society Reviews, 43(1), 412–443. https://doi.org/10.1039/c3cs60197h

Deng, J. Z., Paone, D. V., Ginnetti, A. T., Kurihara, H., Dreher, S. D., Weissman, S. A., Stauffer, S. R., & Burgey, C. S. (2009). Copper-facilitated Suzuki reactions: Application to 2-heterocyclic boronates. Organic Letters, 11(2), 345–347. https://doi.org/10.1021/ol802556f

Silvestro, S., & Mazzon, E. (2023). Nrf2 Activation: Involvement in Central Nervous System Traumatic Injuries. A Promising Therapeutic Target of Natural Compounds. International Journal of Molecular Sciences, 24(1). https://doi.org/10.3390/ijms24010199

Zhang, X., Wu, Q., Lu, Y., Wan, J., Dai, H., Zhou, X., Lv, S., Chen, X., Zhang, X., Hang, C., & Wang, J. (2018). Cerebroprotection by salvianolic acid B after experimental subarachnoid hemorrhage occurs via Nrf2- and SIRT1-dependent pathways. Free Radical Biology and Medicine, 124, 504–516. https://doi.org/10.1016/j.freeradbiomed.2018.06.035

Pan, H., Guan, D., Liu, X., Li, J., Wang, L., Wu, J., Zhou, J., Zhang, W., Ren, R., Zhang, W., Li, Y., Yang, J., Hao, Y., Yuan, T., Yuan, G., Wang, H., Ju, Z., Mao, Z., Li, J., … Liu, G. H. (2016). SIRT6 safeguards human mesenchymal stem cells from oxidative stress by coactivating NRF2. Cell Research, 26(2), 190–205. https://doi.org/10.1038/cr.2016.4

Kawahara, T. L. A., Michishita, E., Adler, A. S., Damian, M., Berber, E., Lin, M., McCord, R. A., Ongaigui, K. C. L., Boxer, L. D., Chang, H. Y., & Chua, K. F. (2009). SIRT6 Links Histone H3 Lysine 9 Deacetylation to NF-κB-Dependent Gene Expression and Organismal Life Span. Cell, 136(1), 62–74. https://doi.org/10.1016/j.cell.2008.10.052

Bellezza, I., Giambanco, I., Minelli, A., & Donato, R. (2018). Nrf2-Keap1 signaling in oxidative and reductive stress. Biochimica et Biophysica Acta - Molecular Cell Research, 1865(5), 721–733. https://doi.org/10.1016/j.bbamcr.2018.02.010

Santos, L., Escande, C., & Denicola, A. (2016). Potential Modulation of Sirtuins by Oxidative Stress. Oxidative Medicine and Cellular Longevity, 2016, 1–12. https://doi.org/10.1155/2016/9831825

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.